Pointwise Semi-Slant Semi-Riemannian Maps

Tanveer Fatima, Rajendra Prasad, Shashikant Pandey, Shweta Singh

Abstract


We use the first variational formula on the fibers to deduce the necessary and sufficient conditions for the harmonicity of pointwise semi-slant semi Riemannian maps, which are defined on Lorentzian para-Sasakian manifolds. We define the sets of Legendre, Hamiltonian and Harmonic variations for any fibre of the map. Moreover, we address the characterization theorem for pointwise semi-slant semi Riemannian maps from Lorentzian para Saskian manifold to a semi-Riemannian metric manifold by considering the vertical Reeb vector field and investigate the properties of totally umbilical fibers. Beside from the peculiarities of pointwise semi-slant semi Riemannian maps, geometry of the distributions associated with the map such as integrability and totally geodesicness are also studied. In the end, we discuss a number of examples illustrating the existence of such maps.


Refbacks

  • There are currently no refbacks.