Multilinear Calder\'on-Zygmund integral operators with generalized kernels and their commutators on product of generalized variable exponent Morrey spaces

Jinqi Wang, Guanghui Lu, Yue Wang

Abstract


本文的目的是研究广义核 $T$ 及其换向子 $T_{\vec{b}}$ 形成的多线性 Calder\'on-Zygmund 积分算子的有界性,$T该换向子由 \mathrm{BMO}(\mathbb{R}^n)$ 和广义可变指数莫里空间 $M^{p_{1}(\cdot),\varphi_{1}}(\mathbb{R}^n)\times
M^{p_2(\cdot),\varphi_2}(\mathbb{R}^n)\times\cdots\times
M^{p_m(\cdot),\varphi_m}(\mathbb{R}^n)$.假设勒贝格可测 $\varphi$ 满足 $\varphi_1\varphi_2\cdots\varphi_m=\varphi$,作者证明 $T$ 的界值来自广义可变指数莫里空间 $M^{p_1(\cdot),\varphi_1}(\mathbb{R}^n)\times M^{p_2(\cdot),\varphi_2}(\mathbb{R}^n)\times\cdots\times M^{p_m(\cdot),\varphi_m}(\mathbb{R}^n)$ 到空格 $M^{p(\cdot),\varphi}(\mathbb{R}^n)$,并且还从乘积变量指数莫里空间 $L^{p_1(\cdot),\lambda_1}(\mathbb{R}^n)\times L^{p_2(\cdot),\lambda_2}(\mathbb{R}^n)\times\cdots\times L^{p_m(\cdot),\lambda_m}(\mathbb{R}^n)$ 到空格 $L^{p(\cdot),\lambda}(\mathbb{R}^n)$.此外,作者还表明,$T_{\vec{b}}$ 的边界是乘积空间 $M^{p_1(\cdot),\varphi_1}(\mathbb{R}^n)\times M^{p_2(\cdot),\varphi_2}(\mathbb{R}^n)\times\cdots\times M^{p_m(\cdot),\varphi_m}(\mathbb{R}^n)$ 到空间 $M^{p(\cdot),\varphi}(\mathbb{R}^n)$。作为推论,还研究了 $T_{\vec{b}}$ 在空间 $L^{p(\cdot),\lambda}(\mathbb{R}^n)$ 上的有界性


Refbacks